Cross-layer design of wireless networks with resource-constrained nodes

Andrea Goldsmith Stanford University wsl.stanford.edu

> NATO Cross-layer Workshop Naval Research Labs June 2, 2004

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 DEC 2007		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Cross-layer design of wireless networks with resource-constrained nodes				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Stanford University				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM002082., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	25	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Wireless Multimedia Networks In Military Operations

Challenges to meeting network performance requirements

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Hostile jammers can disrupt communication
- Traffic patterns, user locations, and network conditions are constantly changing
- No single layer in the protocol stack can guarantee QoS: cross-layer design needed

Crosslayer Design

- Hardware
- Link
- Access
- Network
- Application

Crosslayer Techniques

- Adaptive techniques
 - Link, MAC, network, and application adaptation
- Diversity techniques
 - Link diversity (antennas, channels, etc.)
 - Access diversity
 - Route diversity
 - Application diversity
 - Content location/server diversity
- Scheduling
 - Application scheduling/data prioritization
 - Access scheduling
 - Resource reservation

Ad-Hoc Networks

- Peer-to-peer communications.
- No backbone infrastructure.
- Routing can be multihop.
- Topology is dynamic.
- Fully connected with different link SINRs

Capacity Region Slice Optimized link, MAC, and routing

- (a): Single hop, no simultaneous transmissions.
- (b): Multihop, no simultaneous transmissions.
- (c): Multihop, simultaneous transmissions.
- (d): Adding power control
- (e): Successive interference cancellation, no power control.

Limited node and network complexity significantly limit performance

Optimal Routing

• The point $R_{12} = R_{34} = 1.64 \, Mbps$ is achieved by the following time division:

Route Diversity

Increases capacity and provides robustness

Cross-Layer Scheduling, Diversity and Adaptation

End-to-end distortion

Sensor Networks

- Energy a driving constraint
- Data flows to centralized location.
- Low per-node rates but 10s to 1000s of nodes
- Data highly correlated in time and space.
- Nodes can cooperate in transmission, reception, and compression.

Energy-Constrained Nodes

- Each node can only send a finite number of bits.
 - Transmit energy minimized by maximizing bit duration.
 - Introduces a delay versus energy tradeoff for each bit.
- Short-range networks must consider transmit, circuit, and processing energy.
 - Sophisticated techniques not necessarily energy-efficient.
 - Circuit energy maximized by maximizing bit duration.
 - Sleep modes save energy but complicate networking.
- Changes everything about the network design:
 - Bit allocation must be optimized across all protocols.
 - Delay vs. throughput vs. node/network lifetime tradeoffs.
 - Optimization of node cooperation.

Total Energy (MQAM)

Benefits of Coding

Routing to Minimize Total Energy

• Intermediate nodes act as relays

Orange: hub node
Pink: relay only
Green: relay/source

$$R_1 = 6000bps$$
$$R_2 = R_3 = 0$$

Multi-hop may not be optimal when circuit energy consumption is concerned

Cooperative MIMO

- Nodes close together can cooperatively transmit
 - Form a multiple-antenna transmitter (MIMO Broadcast)
- Nodes close together can cooperatively receive
 - Form a multiple-antenna receiver (MIMO MAC)
- MIMO introduces capacity vs. diversity tradeoffs
 - The communication cost of cooperation must be considered in studying performance gains.

Cooperative MIMO Capacity

Energy Consumption

Delay

Cooperative Compression

- Intelligent local processing can save power and improve centralized processing
- Local processing also affects MAC and routing protocols

Key Message

Ad-hoc networks impose tradeoffs between rate, power/energy, and delay

The tradeoff implications for sensor networks and distributed control is poorly understood

Distributed Control over Wireless Links

- Packet loss and/or delays impacts controller performance.
- Controller design should be robust to network faults.
- Joint application and communication network design.

Joint Design Challenges

- There is no methodology to incorporate random delays or packet losses into control system designs.
- The best rate/delay tradeoff for a communication system in distributed control cannot be determined.
- Current autonomous vehicle platoon controllers are not string stable with *any* communication delay

Can we make distributed control robust to the network?

Yes, by a radical redesign of the controller and the network.

Controller Performance

Summary

- Crosslayer design needed to meet the military's wireless communication needs
- Key synergies in crosslayer design must be identified
- The design must be tailored to the application
- Crosslayer design should include adaptivity, scheduling and diversity across protocol layers
- Energy can be a precious resource that must be shared by different protocol layers
- Node cooperation in communication and compression can provide significant performance gains